independent reflections

reflections with $I > 2\sigma(I)$

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

{4,4'-Dimethoxy-2,2'-[2,2-dimethylpropane-1,3-divlbis(nitrilomethylidyne)]diphenolato{nickel(II)

Morteza Montazerozohori,^a Mohammad Hossein Habibi,^b* Reza Mokhtari,^b Yuki Yamane^c and Takayoshi Suzuki^c

^aDepartment of Chemistry, Yasouj University, Yasouj 75914-353, Iran, ^bCatalysis Division, Department of Chemistry, University of Isfahan, Isfahan 81746-73441, Iran, and ^cDepartment of Chemistry, Faculty of Science, Okayama University, Tsushima-naka 3-1-1, Okayama 700-8530, Japan Correspondence e-mail: mhhabibi@yahoo.com

Received 24 May 2009; accepted 26 May 2009

Key indicators: single-crystal X-ray study; T = 193 K; mean σ (C–C) = 0.002 Å; R factor = 0.026; wR factor = 0.071; data-to-parameter ratio = 16.9.

In the title complex, $[Ni(C_{21}H_{24}N_2O_4)]$, the Ni^{II} ion has a slightly distorted square-planar geometry, coordinated by the two N and two O atoms of a new tetradentate Schiff base ligand. The dihedral angle between the planes of the two NiNC₃O chelate rings is $14.37 (12)^{\circ}$.

Related literature

For the structures of free Schiff bases, see: Garnovskii et al. (1993). Nickel(II) complexes with N2O2 Schiff-base ligands derived from salicylaldehyde have long been used as homogenous catalysts (Gosden et al., 1981; Healy & Pletcher, 1978). For related structures, see: Habibi et al. (2007a,b). For Ni-O and Ni-N distances, see: Akhtar (1981); Shkolnikova et al. (1970).

Experimental

Crystal data

$[Ni(C_{21}H_{24}N_{2}O_{4})]$	V = 3815.5 (3) Å ³
$M_r = 427.13$	Z = 8
Orthorhombic, Pbca	Mo $K\alpha$ radiation
a = 15.6110 (7) Å	$\mu = 1.05 \text{ mm}^{-1}$
b = 9.1151 (5) Å	T = 193 K
c = 26.8142 (12) Å	$0.30 \times 0.20 \times 0.20$ mm

Data collection

Rigaku R-AXIS RAPID	35644 measured reflections
diffractometer	4362 independent reflection
Absorption correction: multi-scan	3946 reflections with $I > 2\sigma$
(ABSCOR; Higashi, 1995)	$R_{\rm int} = 0.020$
$T_{\min} = 0.744, T_{\max} = 0.818$	

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.026$ 258 parameters $wR(F^2) = 0.071$ H-atom parameters constrained $\Delta \rho_{\rm max} = 0.43 \ {\rm e} \ {\rm \AA}^-$ S = 1.05 $\Delta \rho_{\rm min} = -0.18 \text{ e } \text{\AA}^{-3}$ 4362 reflections

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/ MSC, 2004); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

We thank Yasouj University and the University of Isfahan for partial support of this work.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT2968).

References

- Akhtar, F. (1981). Acta Cryst. B37, 84-88.
- Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Garnovskii, A. D., Nivorozhkin, A. L. & Minkin, V. I. (1993). Coord. Chem. Rev. 126, 1-69.
- Gosden, C., Kerr, J. B., Pletcher, D. & Rosas, R. (1981). J. Electroanal. Chem. Interfacial Electrochem. 117, 101–107.
- Habibi, M. H., Mokhtari, R., Harrington, R. W. & Clegg, W. (2007a). Acta Cryst. E63, m1998.
- Habibi, M. H., Mokhtari, R., Harrington, R. W. & Clegg, W. (2007b). Acta Crvst. E63. m2304.
- Healy, K. P. & Pletcher, D. (1978). J. Organomet. Chem. 161, 109-120.
- Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
- Rigaku (1998). PROCESS-AUTO. Corporation, Tokyo, Japan.
- Rigaku/MSC (2004). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Shkolnikova, L. M., Yumal, E. M., Shugam, E. A. & Voblikova, V. A. (1970). Zh. Strukt. Khim. 11, 886-890.

Acta Cryst. (2009). E65, m703 [doi:10.1107/S1600536809019965]

{4,4'-Dimethoxy-2,2'-[2,2-dimethylpropane-1,3-diylbis(nitrilomethylidyne)]diphenolato}nickel(II)

M. Montazerozohori, M. H. Habibi, R. Mokhtari, Y. Yamane and T. Suzuki

Comment

Schiff bases and their biologically active complexes have been studied extensively over the past decade. Although numerous transition metal complexes of Schiff bases have been structurally characterized, relatively few free Schiff bases have been similarly characterized (Garnovskii *et al.*, 1993).

Nickel(II) complexes with N_2O_2 Schiff-base ligands derived from salicylaldehyde have long been used as homogenous catalysts (Gosden *et al.*, 1981; Healy & Pletcher, 1978).

Recently we reported the structure of a copper(II) and nickel(II) complexes with the *N*,*N*⁻bis(6-methoxysalicylidene)-1,3-diaminopropane ligand (Habibi *et al.*, 2007*a*,b). The title compound is isostructural with its Cu^{II} and Ni^{II} analogues.

In the title compound (Figure 1), the Ni—O and Ni—N distances are larger than the comparable mean distances of 1.829 and 1.859 Å (Table 1), respectively, in *N*,*N*⁻ethylenebis(salicylideneiminato)nickel(II) (Shkolnikova *et al.*, 1970) and 1.849 (2) and 1.840 (2) Å, respectively, in *N*,*N*⁻ethylenebis[(2-hydroxy-1-naphthyl)methaniminato]nickel(II) (Akhtar, 1981).

Experimental

A mixture of 6-methoxysalicylaldehyde (2.0 mmol, 304 mg) and 2,2-dimethylpropane-1,3-diamine (1.0 mmol, 102 mg) was dissolved in methanol (10 ml) with stirring for 15 min at room temperature, to give a clear yellow solution. A methanol solution (10 ml) of Ni(OAc)₂.4H₂O (1.0 mmol, 249 mg) was then added. The mixture was refluxed for a further 45 min and then filtered. After keeping the filtrate in air for 5 d, dark green block-shaped crystals were formed at the bottom of the vessel on slow evaporation of the solvent, in about 85% yield.

Refinement

All H atoms were placed in geometrically idealized positions and allowed to ride on their parent atoms, with C—H distances in the range 0.93–0.97 Å and with $U_{iso}(H) = 1.2$ or 1.5 times $U_{eq}(C)$.

Figures

Fig. 1. A view of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.

{4,4'-Dimethoxy-2,2'-[2,2-dimethylpropane-1,3- diylbis(nitrilomethylidyne)]diphenolato}nickel(II)

 $D_{\rm x} = 1.487 \text{ Mg m}^{-3}$ Mo *K* α radiation

Cell parameters from 27241 reflections

 $\lambda = 0.71075 \text{ Å}$

 $\theta = 3.0-27.5^{\circ}$

 $\mu = 1.05 \text{ mm}^{-1}$ T = 193 K

Block, dark-green

 $0.30 \times 0.20 \times 0.20 \text{ mm}$

Crystal data

 $[Ni(C_{21}H_{24}N_{2}O_{4})]$ $M_{r} = 427.13$ Orthorhombic, *Pbca* a = 15.6110 (7) Å b = 9.1151 (5) Å c = 26.8142 (12) Å $V = 3815.5 (3) \text{ Å}^{3}$ Z = 8 $F_{000} = 1792$

Data collection

Rigaku R-AXIS RAPID diffractometer	4362 independent reflections
Radiation source: fine-focus sealed tube	3946 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.020$
Detector resolution: 10.00 pixels mm ⁻¹	$\theta_{\text{max}} = 27.5^{\circ}$
<i>T</i> = 193 K	$\theta_{\min} = 3.0^{\circ}$
ω scans	$h = -20 \rightarrow 20$
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)	$k = -11 \rightarrow 11$
$T_{\min} = 0.744, \ T_{\max} = 0.818$	<i>l</i> = −34→32
35644 measured reflections	

Refinement

Refinement on F^2

	Secondary atom site location: difference Fourier map
	Hydrogen site location: inferred from neighbouring sites
	H-atom parameters constrained
	$w = 1/[\sigma^2(F_0^2) + (0.0413P)^2 + 1.3733P]$
	where $P = (F_0^2 + 2F_c^2)/3$
	$(\Delta/\sigma)_{\text{max}} = 0.001$
	$\Delta \rho_{max} = 0.43 \text{ e} \text{ Å}^{-3}$
	$\Delta \rho_{min} = -0.18 \text{ e } \text{\AA}^{-3}$
ure-invariant direct	Extinction correction: none

Least-squares matrix: full

 $R[F^2 > 2\sigma(F^2)] = 0.026$

 $wR(F^2) = 0.071$

S = 1.05

4362 reflections

258 parameters

Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Ni1	0.951753 (10)	0.180679 (18)	0.014687 (6)	0.02025 (7)
01	0.85263 (6)	0.10007 (11)	0.04139 (3)	0.0281 (2)
02	0.91005 (6)	0.10714 (11)	-0.04479 (3)	0.0271 (2)
O3	0.75989 (7)	0.00704 (12)	0.23785 (4)	0.0353 (2)
O4	1.01038 (8)	0.20756 (14)	-0.23918 (4)	0.0398 (3)
N1	0.97892 (7)	0.27883 (12)	0.07416 (4)	0.0215 (2)
N2	1.05801 (7)	0.23220 (13)	-0.01347 (4)	0.0209 (2)
C1	0.83516 (8)	0.08183 (15)	0.08876 (5)	0.0234 (3)
C2	0.76375 (9)	-0.00620 (16)	0.10235 (5)	0.0287 (3)
H2	0.7304	-0.0512	0.0770	0.034*
C3	0.74193 (9)	-0.02755 (16)	0.15133 (5)	0.0304 (3)
Н3	0.6940	-0.0874	0.1592	0.036*
C4	0.78912 (9)	0.03727 (15)	0.19010 (5)	0.0273 (3)
C5	0.85834 (8)	0.12301 (15)	0.17879 (5)	0.0252 (3)
Н5	0.8908	0.1669	0.2048	0.030*
C6	0.88167 (8)	0.14645 (14)	0.12825 (5)	0.0227 (3)
C7	0.94728 (8)	0.25124 (15)	0.11773 (5)	0.0229 (3)
H7	0.9696	0.3053	0.1451	0.028*
C8	0.79861 (12)	0.0897 (2)	0.27678 (6)	0.0436 (4)
H8A	0.7692	0.0693	0.3083	0.052*
H8B	0.7942	0.1946	0.2691	0.052*
H8C	0.8591	0.0623	0.2797	0.052*
C9	1.03568 (8)	0.40646 (14)	0.06956 (5)	0.0231 (3)
H9A	1.0336	0.4635	0.1009	0.028*
H9B	1.0144	0.4704	0.0424	0.028*
C10	1.12843 (8)	0.36428 (15)	0.05867 (5)	0.0238 (3)
C11	0.93847 (8)	0.13593 (15)	-0.08973 (5)	0.0232 (3)
C12	0.88895 (9)	0.08927 (15)	-0.13120 (5)	0.0272 (3)
H12	0.8368	0.0382	-0.1255	0.033*
C13	0.91455 (9)	0.11618 (16)	-0.17925 (5)	0.0290 (3)
H13	0.8794	0.0852	-0.2062	0.035*
C14	0.99180 (10)	0.18878 (15)	-0.18915 (5)	0.0289 (3)
C15	1.04265 (9)	0.23295 (16)	-0.15007 (5)	0.0272 (3)

H15	1.0956	0.2807	-0.1565	0.033*
C16	1.01630 (9)	0.20742 (14)	-0.10023 (5)	0.0228 (3)
C17	1.07511 (8)	0.23987 (14)	-0.06053 (5)	0.0226 (2)
H17	1.1313	0.2695	-0.0697	0.027*
C18	1.08696 (13)	0.2857 (2)	-0.24969 (6)	0.0474 (4)
H18A	1.0940	0.2950	-0.2859	0.057*
H18B	1.1360	0.2325	-0.2357	0.057*
H18C	1.0838	0.3836	-0.2347	0.057*
C19	1.13172 (8)	0.23648 (15)	0.02101 (5)	0.0230 (3)
H19A	1.1851	0.2446	0.0012	0.028*
H19B	1.1341	0.1428	0.0396	0.028*
C20	1.17187 (10)	0.31209 (18)	0.10659 (6)	0.0349 (3)
H20A	1.2295	0.2761	0.0988	0.042*
H20B	1.1381	0.2328	0.1215	0.042*
H20C	1.1759	0.3940	0.1302	0.042*
C21	1.17386 (10)	0.49902 (17)	0.03763 (6)	0.0364 (3)
H21A	1.2348	0.4769	0.0329	0.044*
H21B	1.1678	0.5811	0.0610	0.044*
H21C	1.1482	0.5256	0.0055	0.044*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ni1	0.01948 (10)	0.02097 (10)	0.02030 (10)	-0.00186 (6)	0.00049 (6)	-0.00188 (6)
01	0.0253 (5)	0.0358 (5)	0.0231 (4)	-0.0077 (4)	0.0010 (4)	-0.0026 (4)
02	0.0279 (5)	0.0305 (5)	0.0229 (4)	-0.0065 (4)	0.0015 (4)	-0.0025 (4)
03	0.0381 (6)	0.0421 (6)	0.0258 (5)	-0.0117 (5)	0.0024 (5)	0.0073 (4)
O4	0.0459 (7)	0.0524 (7)	0.0211 (5)	-0.0077 (5)	-0.0003 (5)	0.0034 (4)
N1	0.0194 (5)	0.0200 (5)	0.0250 (5)	-0.0007 (4)	0.0011 (4)	-0.0019 (4)
N2	0.0207 (5)	0.0189 (5)	0.0230 (5)	0.0012 (4)	-0.0007 (4)	-0.0017 (4)
C1	0.0212 (6)	0.0239 (6)	0.0253 (6)	0.0006 (5)	0.0014 (5)	-0.0005 (5)
C2	0.0258 (7)	0.0303 (7)	0.0302 (7)	-0.0059 (5)	-0.0019 (6)	-0.0016 (5)
C3	0.0267 (7)	0.0312 (7)	0.0332 (7)	-0.0076 (5)	0.0014 (6)	0.0037 (6)
C4	0.0290 (7)	0.0281 (7)	0.0248 (6)	-0.0009 (5)	0.0019 (5)	0.0047 (5)
C5	0.0245 (6)	0.0275 (7)	0.0236 (6)	-0.0004 (5)	-0.0014 (5)	0.0009 (5)
C6	0.0209 (6)	0.0223 (6)	0.0248 (6)	0.0005 (5)	0.0010 (5)	-0.0006 (5)
C7	0.0217 (6)	0.0235 (7)	0.0236 (6)	0.0005 (5)	-0.0012 (5)	-0.0031 (5)
C8	0.0474 (9)	0.0601 (11)	0.0234 (7)	-0.0133 (8)	-0.0003 (7)	0.0057 (7)
С9	0.0246 (6)	0.0191 (6)	0.0255 (6)	-0.0018 (5)	0.0024 (5)	-0.0028 (5)
C10	0.0213 (6)	0.0239 (6)	0.0262 (6)	-0.0031 (5)	0.0005 (5)	-0.0032 (5)
C11	0.0256 (6)	0.0198 (6)	0.0242 (6)	0.0024 (5)	0.0003 (5)	-0.0024 (5)
C12	0.0257 (6)	0.0267 (7)	0.0292 (7)	-0.0003 (5)	-0.0016 (5)	-0.0041 (5)
C13	0.0321 (7)	0.0295 (7)	0.0254 (6)	0.0030 (6)	-0.0053 (6)	-0.0042 (5)
C14	0.0356 (8)	0.0293 (7)	0.0219 (6)	0.0026 (6)	0.0003 (6)	0.0011 (5)
C15	0.0291 (7)	0.0263 (7)	0.0262 (7)	-0.0006 (5)	0.0019 (5)	0.0007 (5)
C16	0.0256 (6)	0.0200 (6)	0.0230 (6)	0.0016 (5)	-0.0004 (5)	-0.0018 (5)
C17	0.0226 (6)	0.0196 (6)	0.0257 (6)	-0.0004 (5)	0.0019 (5)	-0.0018 (5)
C18	0.0581 (11)	0.0578 (11)	0.0264 (7)	-0.0113 (9)	0.0073 (8)	0.0074 (7)

C19	0.0190 (6)	0.0244 (6)	0.0256 (6)	0.0011 (5)	-0.0022 (5)	-0.0024 (5)
C20	0.0314 (7)	0.0428 (9)	0.0304 (7)	0.0021 (6)	-0.0072 (6)	-0.0077 (6)
C21	0.0331 (8)	0.0281 (7)	0.0480 (9)	-0.0089 (6)	0.0117 (7)	-0.0044 (6)
Geometric po	arameters (Å, °)					
Ni1—O2		1.8483 (9)	С9—	-C10	1.52	264 (17)
Ni1-01		1.8566 (9)	С9—	-H9A	0.99	900
Ni1—N1		1.8770 (11)	С9—	-H9B	0.99	900
Ni1—N2		1.8821 (11)	C10-	C21	1.52	263 (19)
O1—C1		1.3098 (16)	C10-	C20	1.52	29 (2)
O2—C11		1.3107 (16)	C10-	C19	1.54	425 (18)
O3—C4		1.3869 (16)	C11-	C16	1.40	072 (18)
O3—C8		1.4222 (19)	C11-	C12	1.41	196 (19)
O4—C14		1.3833 (17)	C12-	C13	1.37	710 (19)
O4—C18		1.420 (2)	C12-	-H12	0.95	500
N1—C7		1.2932 (17)	C13-	C14	1.40	01 (2)
N1-C9		1.4676 (16)	C13-	-H13	0.95	500
N2-C17		1.2917 (17)	C14-	C15	1.37	75 (2)
N2-C19		1.4765 (16)	C15-	C16	1.41	174 (19)
C1—C6		1.4124 (18)	C15-	-H15	0.95	500
C1—C2		1.4211 (18)	C16-	C17	1.43	368 (18)
C2—C3		1.371 (2)	C17-	-H17	0.95	500
C2—H2		0.9500	C18-	-H18A	0.98	300
C3—C4		1.404 (2)	C18-	-H18B	0.98	300
С3—Н3		0.9500	C18-	-H18C	0.98	300
C4—C5		1.3678 (19)	C19-	-H19A	0.99	900
C5—C6		1.4195 (18)	C19-	-H19B	0.99	900
С5—Н5		0.9500	C20-	-H20A	0.98	300
C6—C7		1.4286 (18)	C20-	-H20B	0.98	300
С7—Н7		0.9500	C20-	-H20C	0.98	300
C8—H8A		0.9800	C21-	-H21A	0.98	300
C8—H8B		0.9800	C21-	-H21B	0.98	300
C8—H8C		0.9800	C21-	-H21C	0.98	300
02—Ni1—O	1	84.02 (4)	C21-	C10C20	110	.79 (12)
O2—Ni1—N	1	170.21 (5)	С9—	-C10C20	109	.78 (11)
01—Ni1—N	1	92.82 (4)	C21-	C10C19	110	.51 (11)
02—Ni1—N	2	93.14 (4)	С9—	-C10—C19	110	.31 (10)
O1—Ni1—Ni	2	171.13 (5)	C20-	C10C19	107	.48 (11)
N1—Ni1—Ni	2	91.30 (5)	02—	-C11—C16	124	.67 (12)
C1-01-Ni	1	126.72 (8)	02—	-C11—C12	118	.43 (12)
C11—O2—N	i1	126.98 (9)	C16-	C11C12	116	.88 (12)
С4—О3—С8		115.62 (11)	C13-		121	.59 (13)
C14—O4—C	18	115.53 (12)	C13-	—С12—Н12	119	.2
C7—N1—C9	1	117.43 (11)	C11-	—С12—Н12	119	.2
C7—N1—Ni	1	126.06 (9)	C12-	C13C14	120	.89 (13)
C9—N1—Ni	1	116.29 (8)	C12-	—С13—Н13	119	.6
C17—N2—C	19	116.69 (11)	C14-	—С13—Н13	119	.6
C17—N2—N	li1	125.98 (9)	C15-	C14O4	125	.58 (14)

C19—N2—Ni1	116.25 (8)	C15—C14—C13	119.40 (13)
O1—C1—C6	124.53 (12)	O4—C14—C13	115.01 (13)
O1—C1—C2	118.93 (12)	C14—C15—C16	120.19 (13)
C6—C1—C2	116.53 (12)	C14—C15—H15	119.9
C3—C2—C1	121.38 (13)	С16—С15—Н15	119.9
С3—С2—Н2	119.3	C11—C16—C15	121.02 (12)
C1—C2—H2	119.3	C11—C16—C17	119.92 (12)
C2—C3—C4	121.28 (13)	C15—C16—C17	118.64 (12)
С2—С3—Н3	119.4	N2-C17-C16	125.50 (12)
С4—С3—Н3	119.4	N2-C17-H17	117.2
C5—C4—O3	125.32 (13)	С16—С17—Н17	117.2
C5—C4—C3	119.38 (13)	O4C18H18A	109.5
O3—C4—C3	115.30 (12)	O4C18H18B	109.5
C4—C5—C6	120.03 (12)	H18A—C18—H18B	109.5
С4—С5—Н5	120.0	O4—C18—H18C	109.5
С6—С5—Н5	120.0	H18A—C18—H18C	109.5
C1—C6—C5	121.40 (12)	H18B—C18—H18C	109.5
C1—C6—C7	119.97 (12)	N2-C19-C10	113.82 (11)
C5—C6—C7	118.23 (12)	N2-C19-H19A	108.8
N1—C7—C6	125.60 (12)	С10—С19—Н19А	108.8
N1—C7—H7	117.2	N2-C19-H19B	108.8
С6—С7—Н7	117.2	С10—С19—Н19В	108.8
O3—C8—H8A	109.5	H19A—C19—H19B	107.7
O3—C8—H8B	109.5	C10—C20—H20A	109.5
H8A—C8—H8B	109.5	С10—С20—Н20В	109.5
O3—C8—H8C	109.5	H20A—C20—H20B	109.5
Н8А—С8—Н8С	109.5	С10—С20—Н20С	109.5
H8B—C8—H8C	109.5	H20A-C20-H20C	109.5
N1—C9—C10	112.90 (10)	H20B-C20-H20C	109.5
N1—C9—H9A	109.0	C10-C21-H21A	109.5
С10—С9—Н9А	109.0	C10-C21-H21B	109.5
N1—C9—H9B	109.0	H21A—C21—H21B	109.5
С10—С9—Н9В	109.0	C10-C21-H21C	109.5
Н9А—С9—Н9В	107.8	H21A—C21—H21C	109.5
C21—C10—C9	107.99 (11)	H21B—C21—H21C	109.5
O2-Ni1-O1-C1	167.96 (12)	C9—N1—C7—C6	170.27 (12)
N1—Ni1—O1—C1	-21.33 (12)	Ni1—N1—C7—C6	-4.06 (19)
N2—Ni1—O1—C1	96.3 (3)	C1—C6—C7—N1	-11.4 (2)
O1—Ni1—O2—C11	168.52 (11)	C5—C6—C7—N1	175.86 (13)
N1-Ni1-O2-C11	97.0 (3)	C7—N1—C9—C10	112.05 (13)
N2-Ni1-O2-C11	-19.91 (11)	Ni1—N1—C9—C10	-73.06 (12)
O2—Ni1—N1—C7	87.7 (3)	N1—C9—C10—C21	161.18 (11)
O1—Ni1—N1—C7	16.86 (11)	N1-C9-C10-C20	-77.94 (14)
N2—Ni1—N1—C7	-155.28 (11)	N1-C9-C10-C19	40.32 (15)
O2—Ni1—N1—C9	-86.7 (3)	Ni1—O2—C11—C16	12.44 (19)
O1—Ni1—N1—C9	-157.53 (9)	Ni1-02-C11-C12	-169.17 (9)
N2—Ni1—N1—C9	30.33 (9)	O2—C11—C12—C13	179.71 (13)
O2—Ni1—N2—C17	14.38 (12)	C16—C11—C12—C13	-1.8 (2)
O1—Ni1—N2—C17	85.4 (3)	C11—C12—C13—C14	1.2 (2)

N1—Ni1—N2—C17	-156.90 (12)	C18—O4—C14—C15	-3.2 (2)
O2-Ni1-N2-C19	-153.30 (9)	C18—O4—C14—C13	177.78 (14)
O1—Ni1—N2—C19	-82.3 (3)	C12-C13-C14-C15	0.3 (2)
N1—Ni1—N2—C19	35.43 (9)	C12-C13-C14-O4	179.37 (13)
Ni1—O1—C1—C6	13.03 (19)	O4-C14-C15-C16	179.91 (13)
Ni1—O1—C1—C2	-168.29 (10)	C13-C14-C15-C16	-1.1 (2)
O1—C1—C2—C3	-179.21 (13)	O2-C11-C16-C15	179.35 (13)
C6—C1—C2—C3	-0.4 (2)	C12-C11-C16-C15	0.93 (19)
C1—C2—C3—C4	0.3 (2)	O2-C11-C16-C17	6.8 (2)
C8—O3—C4—C5	9.4 (2)	C12-C11-C16-C17	-171.57 (12)
C8—O3—C4—C3	-170.61 (14)	C14-C15-C16-C11	0.5 (2)
C2—C3—C4—C5	-0.2 (2)	C14-C15-C16-C17	173.07 (13)
C2—C3—C4—O3	179.77 (14)	C19—N2—C17—C16	166.28 (12)
O3—C4—C5—C6	-179.65 (13)	Ni1—N2—C17—C16	-1.35 (19)
C3—C4—C5—C6	0.3 (2)	C11-C16-C17-N2	-12.5 (2)
O1—C1—C6—C5	179.26 (13)	C15-C16-C17-N2	174.77 (13)
C2-C1-C6-C5	0.56 (19)	C17—N2—C19—C10	121.25 (13)
O1—C1—C6—C7	6.7 (2)	Ni1—N2—C19—C10	-69.89 (13)
C2-C1-C6-C7	-171.96 (12)	C21-C10-C19-N2	-90.70 (14)
C4—C5—C6—C1	-0.5 (2)	C9-C10-C19-N2	28.64 (15)
C4—C5—C6—C7	172.12 (12)	C20-C10-C19-N2	148.30 (11)

Fig. 1